首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265885篇
  免费   3839篇
  国内免费   485篇
工业技术   270209篇
  2021年   2315篇
  2019年   2380篇
  2018年   3937篇
  2017年   3885篇
  2016年   4164篇
  2015年   2657篇
  2014年   4560篇
  2013年   12137篇
  2012年   7241篇
  2011年   9709篇
  2010年   7596篇
  2009年   8368篇
  2008年   8867篇
  2007年   9018篇
  2006年   7997篇
  2005年   7098篇
  2004年   6736篇
  2003年   6501篇
  2002年   6328篇
  2001年   5842篇
  2000年   5500篇
  1999年   5449篇
  1998年   12780篇
  1997年   9063篇
  1996年   7078篇
  1995年   5754篇
  1994年   5138篇
  1993年   5029篇
  1992年   4006篇
  1991年   3613篇
  1990年   3911篇
  1989年   3780篇
  1988年   3563篇
  1987年   3215篇
  1986年   3224篇
  1985年   3793篇
  1984年   3597篇
  1983年   3242篇
  1982年   3098篇
  1981年   3155篇
  1980年   2974篇
  1979年   2919篇
  1978年   2937篇
  1977年   3185篇
  1976年   3998篇
  1975年   2624篇
  1974年   2430篇
  1973年   2590篇
  1972年   2094篇
  1971年   1934篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
Nutrient Cycling in Agroecosystems - Reducing agriculturally derived diffuse contaminant losses (via non-point sources) from land to water has proven difficult for decades. Owing to the diversity...  相似文献   
3.
The Gli-B1-encoded γ-gliadins and non-coding γ-gliadin DNA sequences for 15 different alleles of common wheat have been compared using seven tests: electrophoretic mobility (EM) and molecular weight (MW) of the encoded major γ-gliadin, restriction fragment length polymorphism patterns (RFLPs) (three different markers), Gli-B1-γ-gliadin-pseudogene known SNP markers (Single nucleotide polymorphisms) and sequencing the pseudogene GAG56B. It was discovered that encoded γ-gliadins, with contrasting EM, had similar MWs. However, seven allelic variants (designated from I to VII) differed among them in the other six tests: I (alleles Gli-B1i, k, m, o), II (Gli-B1n, q, s), III (Gli-B1b), IV (Gli-B1e, f, g), V (Gli-B1h), VI (Gli-B1d) and VII (Gli-B1a). Allele Gli-B1c (variant VIII) was identical to the alleles from group IV in four of the tests. Some tests might show a fine difference between alleles belonging to the same variant. Our results attest in favor of the independent origin of at least seven variants at the Gli-B1 locus that might originate from deeply diverged genotypes of the donor(s) of the B genome in hexaploid wheat and therefore might be called “heteroallelic”. The donor’s particularities at the Gli-B1 locus might be conserved since that time and decisively contribute to the current high genetic diversity of common wheat.  相似文献   
4.
Wireless Personal Communications - A GPS spoofing attack broadcasts counterfeit signals to resemble standard GPS satellite signals to take control of the correlation peaks of GPS signals to force...  相似文献   
5.
6.
Microtomography (μCT) and nuclear magnetic resonance (NMR) have been used to characterize porous media for decades. Magnetic resonance imaging (MRI) enables direct visualization of pore architecture and many pulse sequences exist. In this work, we tested the MRI pulse sequence Zero Echo Time (ZTE) to study sandstone and carbonate for its ability to address short relaxation times. We aimed at resolving two fluid conduit scales, that is, pores and fractures. In this research, we study tighter porous systems than those previously reported using ZTE. Additionally, pore cluster analysis (PCA), combined with ZTE, can be used to analyze pore-fracture connectivity of relatively large core plugs. We show that ZTE can resolve two-scale pore systems simultaneously, that is, fractures and pores. By combining time-domain NMR pore-size analysis and PCA, we show that careful selection of resolution is necessary to understand transport in porous media.  相似文献   
7.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
8.
Spontaneous unit-cell deformation accompanies spontaneous polarization in perovskite ferroelectrics, thereby making it energetically favorable for domain walls to form on particular planes that satisfy mechanical compatibility. Historically, domain walls are found analytically, solving for walls with compatible strains within the wall plane. However, analytical solutions do not give any information about relative energetics of nonideal domain walls. Here, the orientation of the most favorable domain walls and the relative energetics of nonideal domain walls are predicted by calculating strain mismatch and charge discontinuity over all possible domain wall orientations. This is done for common ferroelectric phase symmetries of tetragonal, rhombohedral, orthorhombic, and monoclinic type. In tetragonal and rhombohedral symmetry, the domain walls are independent of any external stimulus as long as the symmetry is maintained. In orthorhombic and monoclinic symmetry, the orientation of certain mechanically permissible domain walls changes with temperature and/or electric field as the unit cell distorts, while others do not. Additionally, in monoclinic systems, domain wall planes are shown to exist that are not perfectly permissible but are very close to permissible, thus, these walls were not found by prior analytical methods. The visualization of strain compatibility of all the domain walls makes it easy to see precisely on which planes domain walls are expected or not expected and how the domain walls change their orientation under the effect of external stimulus. Such an analysis can also be used to investigate the relative and changing energetics of nonideal domain walls in systems under thermal, compositional, electrical, and mechanical stimuli.  相似文献   
9.
The extensive occurrence of textile and pharmaceutical contaminants and their metabolites in water systems has posed significant concerns regarding their possible threat to human health and the environmental system. As a result, herein ZnFe2O4 nanoparticles were synthesized through the use of Monsonia burkeana plant extract. The synthesized nanoparticles were characterized using XRD, FTIR, UV–vis, SEM, EDS, TGA, BET, PL, EPR and VSM. XRD showed that the crystalline structure of ZnFe2O4 nanoparticles with a calculated crystal size of 25.03 nm was formed. FT-IR confirmed the characteristic functional groups contained within the M. burkeana plant were deposited on the formed ferrite nanoparticles. BET analysis confirmed the mesoporous nature of ZnFe2O4 with an average pore diameter of 31.6 nm. Morphological studies demonstrated that the formed nanoparticles had spherical as well as rod-like shapes. ZnFe2O4 photocatalyst illustrated that it may be effortlessly detached by an external magnetic field. The optimum conditions for the 99.8% removal of Methylene Blue was obtained at pH12, within 45min and at the optimum dosage of 25 mg of the catalyst. The as-prepared ZnFe2O4 nanoparticles proved to be easily separated and recycled, and remained efficient even after 5 reuses, proving that the material is highly stable. The ROS studies also demonstrated that electrons are the main factors contributing to the degradation of MB. Upon testing the photocatalytic performance of the sulfonamide antibiotic, sulfisoxazole in water showed a degradation of 67%. This study has shown that these materials can be used in targeting textile and pharmaceutically polluted water.  相似文献   
10.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号